Combining measurements from three anatomical areas for glaucoma diagnosis using Fourier-domain optical coherence tomography
نویسندگان
چکیده
AIMS To improve the diagnostic power for glaucoma by combining measurements of peripapillary nerve fibre layer (NFL), macular ganglion cell complex (GCC) and disc variables obtained with Fourier-domain optical coherence tomography (FD-OCT) into the glaucoma structural diagnostic index (GSDI). METHODS In this observational, cross-sectional study of subjects from the Advanced Imaging of Glaucoma Study, GCC and NFL of healthy and perimetrical glaucoma subjects from four major academic referral centres of the Advanced Imaging of Glaucoma Study were mapped with the RTVue FD-OCT. Global loss volume and focal loss volume parameters were defined using NFL and GCC normative reference maps. Optimal weights for NFL, GCC and disc variables were combined using multivariate logistic regression to build the GSDI. Glaucoma severity was classified using the Enhanced Glaucoma Staging System (GSS2). Diagnostic accuracy was assessed by sensitivity, specificity and the area under the receiver operator characteristic curve (AUC). RESULTS We analysed 118 normal eyes of 60 subjects, 236 matched eyes of 166 subjects with perimetrical glaucoma, and 105 eyes from a healthy reference group of 61 subjects. The GSDI included composite overall thickness and focal loss volume with weighted NFL and GCC components, as well as the vertical cup-to-disc ratio. The AUC of 0.922 from leave-one-out cross validation was better than the best component variable alone (p=0.047). The partial AUC in the high specificity region was also better (p=0.01), with a sensitivity of 69% at 99% specificity, and a sensitivity of 80.3% at 95% specificity. For GSS2 stages 3-5 the sensitivity was 98% at 99% specificity, and 100% at 95% specificity. CONCLUSIONS Combining structural measurements of GCC, NFL and disc variables from FD-OCT created a GSDI that improved the accuracy for glaucoma diagnosis. TRIAL REGISTRATION NUMBER NCT01314326.
منابع مشابه
Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography.
PURPOSE To map ganglion cell complex (GCC) thickness with high-speed Fourier-domain optical coherence tomography (FD-OCT) and compute novel macular parameters for glaucoma diagnosis. DESIGN Observational, cross-sectional study. PARTICIPANTS One hundred seventy-eight participants in the Advanced Imaging for Glaucoma Study, divided into 3 groups: 65 persons in the normal group, 78 in the peri...
متن کاملAnterior Chamber Angle Evaluation with Fourier-Domain Optical Coherence Tomography
New advances in anterior segment optical coherence tomography (OCT) technology development allow visualizing the anterior chamber angle of the eye with high speed and high resolution. Fourier-domain (FD) OCT instruments working at 840 nm can reliably identify fine angle structures such as the Schwalbe's line. This paper demonstrates quantitative angle assessment with 840 nm FD-OCT and provides ...
متن کاملبررسی پایایی و تکرار پذیری دستگاه Spectral domain optical coherence tomography در اندازه گیری ضخامت ماکولا در چشمهای طبیعی قبل و بعد از گشاد کردن مردمک
Background: optical coherence tomography is one of the most valuable imaging techniques in the evaluation of macula. Objective: to investigate the repeatability and reproducibility of OCT in measuring the macular thickness in normal eyes before and after pupil dilation. Methods: A total of 44 eyes were enrolled. All subjects underwent macular thickness measurement using the Cirrus SD-OCT ma...
متن کاملEffect of Signal Intensity on Measurement of Ganglion Cell Complex and Retinal Nerve Fiber Layer Scans in Fourier-Domain Optical Coherence Tomography.
PURPOSE We determined the effect of Fourier-domain optical coherence tomography (OCT) signal strength index (SSI) and cropping on retinal nerve fiber layer (RNFL) and macular ganglion cell complex (GCC) scan repeatability and measurement thickness. METHODS Eyes were enrolled in the longitudinal Advanced Imaging for Glaucoma Study. At each visit, three repeat scans from the optic nerve head an...
متن کاملReproducibility of nerve fiber layer thickness measurements using 3D fourier-domain OCT.
PURPOSE Conventional time-domain optical coherence tomography (OCT) has been shown to provide reproducible retinal nerve fiber layer (RNFL) measurements. Recently, high-speed, high-resolution Fourier-domain 3D-OCT has been introduced to improve OCT quality. It can provide 6-mm(2) high-density scans to provide RNFL thickness measurements. The purpose of this study was to test the reproducibility...
متن کامل